s standard deviation
T thermodynamic temperature, K
$V^{E} \quad$ excess volume, $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$
x mole fraction
M
DMF morpholine
\mathbf{N}, \mathbf{N}-dimethylformamide
dimethyl sulfoxide
Reglatry No. DMF, 68-12-2; morpholine, 110-91-8; methanol, 67-56-1; acetone, 67-64-1; benzene, 71-43-2; chloroform, 67-66-3; dimethyl sulfoxide, 67-68-5.

Llterature Cited

(1) Awwad, A. M.; Allos, E. I. J. Pet. Res. (Iraq) 1986, 5, 95.
(2) Awwad, A. M.; AI-Madafl, S. F.; Jbara, K. A. J. Chem. Thermodyn. 1985, 17, 105.
(3) AI-Mashhadani, A. M.; Awwad. A. M. Thermochim. Acta 1985, 89, 75.
(4) Riddick, J. A.; Bunger, W. B. Organic Solvents; Wiley-Interscience: New York, 1970; Vol. II.

Received for review April 21, 1987. Accepted December 23, 1987.

Gas Viscosities of Azeotropic Mixtures of the Halogenated Hydrocarbons R500, R502, and R503

Mitsuo Takahashi, Chlaki Yokoyama, and Shinjl Takahashl*
Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Sendai 980, Japan

Abstract

Gas viscosities of azeotropic mixtures R500 (dichlorodifluoromethane (R12)-1,1-difluoroethane (R152a)), R502 (chlorodifluoromethane (R22)-chloropentafluoroethane (R115)), and R503 (chlorotrifiuoromethane (R13)-irifluoromethane (R23)) were measured with an oscillating disk viscometer of the Maxwell type at $273.15-423.15 \mathrm{~K}$ up to 7.5 MPa . Two empirical equations for the viscositles were obtained; one Is for the atmospherlc viscosities as a function of temperature, and the other is for the viscosities in the whole range of the present measurement as a function of temperature and density.

The measurements of gas viscosities of halogenated hydrocarbons under pressure are being continued by the present authors, and the viscosity data for dichloromethane (R12), chlorotrifluoromethane (R13), bromotrifluoromethane (R13B1), chlorodifluoromethane (R22), 1,2,2-trichloro-1,1,2-trifluoroethane (R113), 1,2-dichloro-1, 1,2,2-tetrafluoroethane (R114), chloropentafluoroethane (R115), 1-chloro-1,1-difluoroethane (R142b), and 1,1-diffluoroethane (R152a) were reported previously (1-5). Gas viscosities of azeotropic mixtures of halogenated hydrocarbons R500, R502, and R503 are described in the present paper.

Table I shows the composition and the physical properties of azeotropic mixtures (6), and Table II shows the physical properties of the components of azeotropic mixtures (6).

The gas viscosity of R500 was measured by Latto et al. (7) in the temperature range from 244 to 360 K at atmospheric pressure but has not been measured under pressure. The gas viscosities of R502 and R503 have not been measured in any pressure range.

The atmospheric viscosity vs temperature equations were obtained for R500 (7,8) on the basis of the experimental viscosity values (7), and the equation of the same type was obtained for R502 (8) on the basis of predicted values (9). Description for the viscosity of R503 was not found in the literature.

Experimental Section

Vlscosity Measurement (10,11). The viscosity was measured with an oscillating disk viscometer of the Maxwell type
shown in Figure 1. The main part is the suspension system shown in Figure 2, which is composed of an oscillating stainless steel disk (A), a fine suspension quartz wire (C), two fixed stainless steel disks (K), and a stainless steel stem (B) with a nickel-plated glass mirror and with a Permalloy piece (F). In this system the distance between the oscillating disk and the upper fixed disk should be equal to the distance between the oscillating disk and the lower fixed disk at any ambient temperatures. In order to satisfy this requirement, three quartz tubes (M) were inserted between the upper fixed disk and a fixing disk (I), and three stainless steel spacers (L) were inserted between the two fixed disks, and the length of the stem was adjusted. The three quartz tubes and the three spacers were fixed by using three stainless steel rods (N), nuts (O, Q), and springs (P). The characteristics of the suspension system are shown in Table III.

Newell's theory (12) was used for analysis in a manner similar to that used by Iwasaki and Kestin (13). The apparatus constant, C_{N}, was determined experimentally with nitrogen as standard at $298.15,323.15,348.15,373.15$, and 398.15 K in the pressure range from 0.1 to 6 MPa . The viscosity values of nitrogen recommended by Hanley et al. $(14,15)$ were used and the density of nitrogen was calculated from a BWR equation of state (15). The obtained \mathcal{C}_{N} values were nearly constant, independent of temperature and pressure. The mean value was 1.1338 and the probable error was 0.03% for 39 experimental points. The error in the viscosity determination was estimated to be less than 0.3% considering the error of logarithmic decrement (0.25%) and the error of the period of oscillation (0.01%).

Density Measurement (16). In this study the density was measured at the temperature and pressures at which the viscosity was measured. A schematic diagram of the apparatus is shown in Figure 3. A high-pressure pipet (B), the detail of which is shown in Figure 4, was designed for the measurement in the critical region and was located at the same level as the oscillating disk. Sample gas was introduced into the highpressure pipet at the same temperature and pressure at which the viscosity was measured, and then introduced into an expansion system composed of a mercury manometer (H), a connecting capillary (D), and four glass cylinders (K). The expansion system was thermostated at 298.15 K , and evacuated before introducing the gas. Residual gas in the pipet was

Table I. Physical Properties of Azeotropic Mixtures

	composition	$\mathrm{mol} \mathrm{wt}{ }^{a}$	$T_{\mathrm{b}}{ }^{a}{ }^{\text {K }} \mathrm{K}$	$T_{\mathrm{c}}{ }^{a}{ }^{\text {a }} \mathrm{K}$	$P_{\mathrm{c}}{ }^{\text {a }}$, MPa	$\rho_{\mathrm{c}}{ }^{\text {a }}$ a $\mathrm{kg} \cdot \mathrm{m}^{-3}$
R500	R12 (73.8 wt \%) + R152a (26.2 wt \%)	99.31	239.7	378.7	4.43	497
R502	R 22 (48.8 wt \%) + R115 (51.2 wt \%)	111.6	227.6	363	4.27	559
R503	R13 (59.9 wt \%) + R23 (40.1 wt \%)	87.5	184.5	292.7	4.19	491

${ }^{a}$ Mol wt, molecular weight; T_{b}, boiling point at atmospheric pressure; T_{c}, critical temperature; P_{c}, critical pressure; ρ_{c}, critical density. Reference 6 .

Figure 1. Viscometer: A, oscillating disk; B, stem; C, suspension wire; D, bolt; E, mirror; F, Permalloy piece; G, gear; H, nut; I, fixing disk; J, gear; K, fixed disk; L, spacer; M, quartz tube; N, rod; O , nut; P , spring; Q, nut; R, bolt; S, window; T, packing; U, ring; V and W, well for thermocouple; X, gas inlet.

Figure 2. Suspension system. See Figure 1 for key.
transferred by using a Toepler pump (T). The quantity (moles) of the gas was determined from the volume, pressure, temperature of the system. The density of the gas was determined

Table II. Physical Properties of Components of Azeotropic Mixtures

	chem formula	$\mathrm{mol} \mathrm{wt}^{\text {a }}$	$\begin{gathered} T_{\mathrm{b}}{ }^{a}{ }^{\mathrm{K}} \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} T_{\mathrm{c}}{ }^{a}{ }^{2} \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} P_{c_{\mathrm{c}}{ }^{\prime}}^{\mathrm{MPa}} \end{gathered}$	$\begin{gathered} \rho_{\mathrm{c}}{ }^{a} \\ \mathrm{~kg} \cdot \mathrm{~m}^{-3} \end{gathered}$
R12	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	120.914	243.5	384.95	4.125	558
R13	CClF_{3}	104.459	191.8	302.0	3.92	579
R22	CHClF_{3}	86.467	232.4	369.2	4.977	525
R23	CHF_{3}	70.014	191.1	298.8	4.84	526
R115	$\mathrm{CClF}_{2} \mathrm{CF}_{3}$	154.468	234.1	353.2	3.157	613
R152a	$\mathrm{CH}_{3} \mathrm{CHF}_{2}$	66.050	248.2	386.6	4.50	365

${ }^{a}$ Nomenclature and the data source are the same as in Table I.

Table III. Characteristics of the Suspension System at 298.15 K

distance between two fixed disks, mm	1.732
distance between the oscillating disk and the upper fixed disk, mm	0.388
distance between the oscillating disk and the lower fixed disk, mm	0.388
radius of the oscillating disk, mm	14.080
thickness of the oscillating disk, mm	0.959
moment of inertia of the suspension system, $\mathrm{kg} \mathrm{m}{ }^{2}$	4.6057×10^{-7}
period of oscillation in vacuo, s	28.585
logarithmic decrement in vacuo	2.3×10^{-5}

Figure 3. Schematic diagram of apparatus: A, viscometer; B, highpressure pipet; C , connecting tube; D , connecting capillary; E , vacuum pump; F and G , thermostat; H , mercury manometer; K , glass cylinder; L , pressure difference detector; M , pressure balance; N , sample cylinder; P, pilot lamp; T, Toepler pump.

Figure 4. High-pressure pipet.

Table IV. Error Analysis in the Determination of the Gas Density
measured quantity error \%

1. The Volume of the Expansion System $\left(V_{\mathrm{e}}\right)$				
4 glass cylinders	$1417.20 \pm 0.08 \mathrm{~cm}^{3}$			
connecting capillary	$5.59 \pm 0.02 \mathrm{~cm}^{3}$			
mercury manometer	$(0-50) \pm 0.02 \mathrm{~cm}^{3}$			
total $\left(V_{e}\right)$	$1422.79+(0-50) \pm 0.12$	0.008		
	$\mathrm{~cm}^{3}$			

2. The Number of Moles of
the Gas in the Expansion System (n)
$P=(750-770) \pm 0.1 \mathrm{mmHg}$ 0.013 V_{e}
$z=(0.95-1) \pm 0.0001$ 0.008 0.01
$T=298.15 \pm 0.01 \mathrm{~K}$ 0.003
$n=P V_{\mathrm{e}} / z R T$ 0.034
3. The Volume of the High-Pressure Pipet $\left(V_{h}\right)$ n
z

$$
0.034
$$

z for nitrogen (17, 18)
0.05
$T=298.15 \pm 0.01 \mathrm{~K}$ 0.003
$P=12 \pm 0.0001 \mathrm{MPa}$
0.001
$V_{\mathrm{h}}=n z R T / P=6.837 \mathrm{~cm}^{3}$ 0.088

	4. The Gas Density (ρ)	0.034
n		0.088
V_{h}		0.12

Flgure 5. Gas viscosity vs pressure plots for R500.
from the above-determined gas quantity and the volume of the high-pressure pipet. The volume of the high-pressure pipet was determined as follows: the nitrogen (99.99% pure) was sampled into the pipet at 298.15 K and 12 MPa , and then introduced into the expansion system. The quantity of the nitrogen was determined by the procedure described above. Then, the volume of the pipet was calculated from the above determined gas quantity and the compressibility factor $(17,18)$. The volume of each part, the experimental condition, and the error analysis are shown in Table IV.

Substances. The azeotropic mixtures, the purities of which were certified to be 99.9%, were supplied by the Daikin Kogyo

Figure 6. Gas viscosity vs density plots for R500.

Flgure 7. Gas viscosity vs pressure plots for R502.

Co. and used without further purification. Gas chromatic analysis gave the same composition as shown in Table I and detected no impurities.

Results and Discussion

The viscosity values obtained in the present measurement are shown in Tables V, VI, and VII and in Figures 5-10. Density values given in Table V and VII for R500 and R503 were obtained in this study, and those given in Table VI for

Table V. Gas Viscosity of R500

P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	
	273.15 K		0.5419	19.75	13.96	3.535	194.9	18.31	5.245	323.4	24.59	
0.1052	4.603	11.00	0.6906	25.64	13.96	3.620	206.6	18.66	5.299	334.5	25.04	
0.1499	6.819	10.98	0.8019	29.99	13.99	3.697	219.2	19.12	423.15 K			
0.1984	9.145	10.98	0.9359	35.68	14.03	3.762	230.7	19.51				
0.2475	11.58	10.95	1.070	41.49	14.08	3.817	242.7	19.96	0.1011	2.869	16.65	
0.2975	14.13	10.94	1.203	48.07	14.13	3.863	253.8	20.35	0.1016	2.885	16.70	
0.3512	16.98	10.94	1.336	53.96	14.21	3.893	265.8	20,86	0.2508	7.179	16.65	
	$298.15 \mathrm{~K}$		1.451	59.86	14.28	3.926	276.8	21.38	0.4442	12.85	16.73	
				1.562	65.72				14.32	0.6427	18.61	16.81
0.1017	4.154	11.94	1.658	71.60	14.41		398.15 K		0.8770	26.03	16.83	
0.1531	6.312	11.92	1.774	77.67	14.47	0.1005	3.035	15.83	1.132	34.09	16.92	
0.2051	8.547	11.91	1.879	84.04	14.59	0.2480	7.564	15.83	1.414	43.27	17.05	
0.2647	11.17	11.91	1.975	90.43	14.65	0.3952	12.18	15.86	1.711	53.36	17.21	
0.3283	14.09	11.90	2.073	97.09	14.80	0.6413	20.11	15.94	2.009	63.95	17.35	
0.3982	17.29	11.89	2.147	103.2	14.89	0.8759	27.93	15.99	2.252	73.05	17.51	
0.4754	21.02	11.90	2.229	109.1	14.97	1.090	35.46	16.06	2.530	83.83	17.70	
0.5568	25.12	11.88	2.302	115.7	15.12	1.307	43.22	16.17	2.876	97.76	17.99	
0.6441	29.72	11.89	2.373	121.6	15.22	1.597	53.93	16.31	3.131	108.7	18.24	
0.7388	34.90	11.88	2.402	124.5	15.31	1.896	65.78	16.44	3.391	120.7	18.49	
	323.15 K			373.15 K		2.169	77.26	16.66	3.577	129.3	18.69	
0.1020	3.829	12.92				2.429	88.99	16.89	3.779	139.1	18.94	
0.1029	3.838	12.92	0.1011 0.1019	3.264 3.290	14.89 14.88	2.676 2.894	111.6	17.09 17.29	4.015 4.260	161.3	19.28 19.63	
0.1917	7.296	12.92	0.2445	7.990	14.91	3.113	123.3	17.57	4.496	176.9	19.98	
0.2838	10.96	12.91	0.3935	13.03	14.89	3.320	135.3	17.88	4.651	187.5	20.29	
0.3934	15.47	12.92	0.5656	19.01	14.95	3.511	147.1	18.14	4.864	200.4	20.74	
0.4971	19.81	12.95	0.7605	26.06	14.99	3.689	158.9	18.45	5.081	214.8	21.23	
0.5868	23.71	12.95	0.9534	33.24	15.05	3.857	170.2	18.77	5.291	229.2	21.75	
0.6820	28.04	12.96	1.243	44.94	15.16	4.013	182.1	19.11	5.465	242.7	22.24	
0.7746	32.39	12.99	1.514	56.42	15.28	4.161	193.8	19.43	5.719	262.4	23.01	
0.8876	37.74	13.00	1.764	67.59	15.44	4.298	205.8	19.89	5.965	283.1	23.87	
0.9746	42.10	13.03	1.964	77.27	15.60	4.426	217.6	20.27	6.111	296.1	24.40	
1.077	47.46	13.05	2.188	88.71	15.77	4.549	229.5	20.73	6.319	315.5	25.32	
1.214	55.39	13.11	2.396	100.5	16.01	4.659	241.6	21.17	6.512	334.6	26.28	
1.306	61.01	13.17	2.586	112.2	16.21	4.743	252.3	21.60	6.697	352.7	27.21	
1.397	67.15	13.23	2.761	123.7	16.47	4.859	265.4	22.12	6.870	371.3	28.18	
	348.15 K		2.927	135.7	16.72	4.953	277.5	22.54	7.074	396.7	29.62	
0.1015	3.518	13.91	3.075	147.6	17.01	5.036	289.5	23.11	7.238	414.4	30.68	
0.1017	3.527	13.93	3.209	159.4	17.28	5.116	301.0	23.55	7.391	431.3	31.69	
0.2479	8.730	13.90	3.330	171.3	17.62	5.181	312.9	24.14	7.533	447.3	32.74	
0.3945	14.13	13.93	3.439	183.0	17.95				7.688	463.5	33.83	

Flgure 8. Gas viscosity vs density plots for R502.
R502 were calculated from the equation of state proposed by Martin et al. (19).

Figure 9. Gas viscosity vs pressure plots for R503.
It will be noted that the viscosity vs pressure isotherms intersect as shown in Figures 5, 7, and 9, but the viscosity vs

Table VI. Gas Viscosity of R502

P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$
	273.15 K		1.850	105.5	14.59	0.9957	38.74	16.01	398.15 K		
0.1013	5.092	11.82	2.000	119.1	14.81	1.143	45.02	16.06	0.1013	3.440	16.75
0.1013	5.092	11.83	2.064	125.8	14.90	1.306	52.21	16.16	0.1672	5.695	16.76
0.1809	9.247	11.78				1.453	58.88	16.22	0.2158	7.373	16.79
0.2624	13.67	11.78	348.15 K			1.611	66.29	16.33	0.3101	10.65	16.78
0.3263	17.26	11.75	0.1013	3.945	14.82	1.804	75.67	16.44	0.4504	15.60	16.82
0.4013	21.64	11.75	0.1013	3.945	14.82	1.981	84.65	16.58	0.5983	20.92	16.84
0.4921	27.16	11.74	0.1773	6.955	14.83	2.163	94.26	16.73	0.7512	26.51	16.89
0.5604	31.59	11.74	0.2462	9.718	14.84	2.372	107.9	16.93	0.9043	32.23	16.93
			0.3344	13.31	14.84	2.514	114.2	17.07	1.052	37.87	17.03
	298.15 K		0.4124	16.54	14.87	2.706	127.9	17.30	1.202	43.68	17.07
0.1013	4.639	12.83	0.5259	21.34	14.88	2.872	136.6	17.49	1.407	51.87	17.17
0.1013	4.639	12.82	0.6434	26.43	14.91	3.028	147.2	17.72	1.577	58.82	17.25
0.1792	7.923	12.83	0.7784	32.44	14.94	3.195	159.2	17.98	1.746	65.93	17.35
0.2300	10.75	12.82	0.9216	39.02	14.98	3.388	174.2	18.34	1.935	74.10	17.45
0.3096	14.66	12.81	1.046	44.94	15.04	3.528	185.7	18.65	2.231	82.81	17.61
0.3952	19.00	12.83	1.181	51.56	15.11	3.662	197.5	18.94	2.320	91.49	17.74
0.4509	21.90	12.82	1.345	59.92	15.12	3.803	210.8	19.29	2.505	100.3	17.90
0.5077	24.92	12.82	1.473	66.76	15.26	3.931	223.8	19.68	2.677	109.6	18.07
0.5872	29.28	12.83	1.600	73.81	15.36	4.079	239.9	20.15	2.872	118.6	18.25
0.6951	35.44	12.86	1.726	81.08	15.42	4.203	254.8	20.62	3.060	128.5	18.45
0.7929	41.29	12.88	1.924	91.83	15.58	4.324	270.5	21.13	3.210	136.6	18.60
0.8993	48.01	12.90	2.055	101.6	15.73	4.434	286.0	21.63	3.406	147.7	18.85
1.041	57.63	12.94	2.212	112.5	15.89	4.524	300.0	22.10	3.590	158.5	19.10
1.128	63.95	12.99	2.345	122.3	16.06	4.612	314.7	22.65	3.744	167.9	19.34
	323.15 K		2.503	134.8	16.28	4.702	330.8	23.36	3.961	181.7	19.68
0.1013	4.263	13.83	2.626 2.783	145.4	16.49 16.81	4.800	350.4	24.13	4.181	196.5	20.09
0.1013	4.263	13.84	2.976	180.9	16.81 17.30	4.906 5.024	373.5 402.4	25.04	4.381	210.6	20.46
0.1662	7.046	13.83	3.976	180.9	17.77	5.024 5.111	402.4 425.7	26.51 27.59	4.563 4.757	224.1	20.90 21.34
0.2305	9.849	13.82	3.268	221.6	18.34	5.111 5.146	425.7	28.59 28.16	4.757 4.952	235.4	21.84
0.3040	13.11	13.82	3.376	241.9	18.96	5.146 5.238	462.5	29.72	5.140	271.9	22.44
0.3962	17.29	13.83 13.85	3.481	267.3	19.80	5.238 5.344	494.1	31.84	5.140 5.313	287.8	23.04
0.5006 0.6156	22.15 27.68	13.85 13.87		373.15 K		5.461	529.2	34.50	5.514	307.3	23.72
0.7438	34.07	13.90	0.1013	3.674	15.80	5.551	561.2	37.04	5.713	329.6	24.54
0.8583	40.01	13.94	0.1013	3.674	15.80	5.699	596.4	39.93	5.922	350.2	25.48
0.9809	46.63	13.96	0.1824	6.653	15.81	5.774	616.1	41.64	6.070	367.0	26.21
1.118	54.37	14.04	0.2787	10.24	15.82	5.943	656.3	45.00	6.266	390.0	27.29
1.233	61.22	14.09	0.3668	16.57	15.84	5.967	661.4	45.42	6.498	418.1	28.65
1.360	69.23	14.18	0.4712	17.57	15.85	6.085	685.5	47.49	6.672	439.7	29.82
1.482	77.32	14.25	0.5816	21.87	15.88	6.200	706.0	49.27	6.782 6.966	453.5 476.6	30.60 31.94
1.576	83.99	14.32	0.7084	26.91	15.91	6.313 6.534	723.9	53.06	6.966	476.6	31.94
1.723	97.07	14.46	0.8474	32.56	15.95	6.534	753.3	53.06			

Figure 10. Gas viscosity vs density plots for R503.

Figure 11. Deviations of the literature viscosity values from those calculated by eq 1 for R500 and R502.
density isotherms do not intersect, as shown in Figures 6, 8, and 10.

Equation 1 was obtained for the present experimental viscosity values at the atmospheric pressure as a function of temperature.

$$
\begin{equation*}
\eta_{1}=a_{1} T+a_{2} T^{2} \tag{1}
\end{equation*}
$$

Constants in eq 1 and deviations of the experimental viscosity values from those calculated by eq 1 are shown in Table VIII. Table VIII shows that the reproducibility of eq 1 is satisfactory, because the maximum deviations (0.34% for R500 and 0.46% for R503) are not much larger than the estimated experimental error (0.3%).

Table VII. Gas Viscosity of R503

P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	P, MPa	$\rho, \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$
	273.15 K		0.7018	23.85	16.13	7.735	378.5	26.82		398.15 K	
0.1020	3.961	13.68	1.099	38.33	16.29	8.007	399.0	27.72	0.1019	2.702	19.39
0.1019	3.958	13.68	1.463	52.22	16.46	8.276	419.9	28.68	0.1022	2.707	19.38
0.2939	11.65	13.69	1.907	70.21	16.70	8.546	440.9	29.61	0.5846	15.82	19.50
0.4894	19.82	13.71	2.302	87.25	16.92	8.815	461.0	30.71	1.097	30.22	19.64
0.6863	28.45	13.79	2.692	106.1	17.27	9.076	481.5	31.78	1.697	46.77	19.85
0.8820	37.47	13.82	3.050	123.4	17.56	9.340	501.5	32.84	2.182	62.20	20.08
1.077	46.99	13.90	3.425	143.7	17.97	9.608	521.8	33.95	2.659	76.11	20.31
1.273	57.12	13.98	3.671	157.1	18.27	9.876	540.5	35.15	3.195	92.99	20.63
1.474	68.17	14.10	3.976	176.5	18.68	10.19	562.7	36.35	3.705	108.8	20.94
1.669	79.98	14.19	4.292	197.2	19.21	10.48	581.4	37.64	4.206	124.9	21.26
1.840	91.01	14.33	4.597	219.4	19.84	10.77	600.2	38.82	4.707	141.5	21.60
2.019	103.4	14.49	4.871	240.7	20.44	11.10	619.8	40.40	5.226	159.5	22.08
2.221	119.6	14.74	5.185	267.6	21.24	11.41	637.1	41.58	5.692	176.5	22.49
2.369	132.6	14.94	5.240	272.8	21.42	11.71	653.1	42.77	6.203	195.1	22.93
2.488	144.7	15.15	5.567	304.8	22.49	11.90	663.4	43.54	6.753	215.9	23.57
2.605	157.8	15.43	5.863	336.5	23.69				7.229	234.3	24.11
2.659	164.7	15.56	6.092	363.6	24.73		373.15 K 2875		7.738	254.1	24.76
			6.251	383.9	25.57	0.1017	2.875	18.42	8.334	277.8	25.53
	$298.15 \mathrm{~K}$		6.516	419.1	27.16	0.1017	2.875	18.28	8.824	297.6	26.21
0.1022	3.628	14.94	6.765	453.8	28.83	0.1024	2.896	18.32	9.372	320.0	27.01
0.1022	3.628	15.00	6.925	476.5	29.99	0.4903	14.13	18.39	9.806	338.2	27.77
0.2977	10.74	15.01	7.135	506.9	31.73	0.9714	28.55	18.52	10.29	357.7	28.62
0.6006	22.21	15.12	7.345	536.6	33.43	1.496	44.83	18.70	10.83	380.9	29.50
1.075	41.44	15.23	7.523	560.0	34.93	1.963	59.61	18.90	11.31	401.0	30.55
1.513	60.83	15.42	7.679	580.5	36.16	2.518	78.02	19.20	11.57	410.7	30.83
2.005	84.98	15.69	7.856	602.5	37.64	3.101	98.68	19.55	12.06	430.8	31.82
2.384	105.8	16.07	8.136	633.8	39.95	3.721	121.2	19.96	12.55	450.6	32.75
2.750	128.2	16.47	8.362	657.8	41.73	4.267	141.9	20.45	12.55	450.6	32.75
3.211	161.3	17.16	8.362	657.8	41.73	4.790	163.2	20.95		423.15 K	
3.490	186.1	17.69		348.15 K		5.298	184.6	21.51	0.1010	2.519	20.47
3.685	205.7	18.16	0.1018	3.088	17.18	5.777	205.5	22.06	0.1025	2.556	20.47
3.908	231.3	18.86	0.1023	3.104	17.17	6.232	226.1	22.66	0.6877	17.57	20.62
4.117	260.2	19.69	0.4002	12.34	17.28	6.806	253.3	23.47	1.208	31.35	20.77
4.267	285.6	20.55	0.7255	22.74	17.31	7.240	274.7	24.13	1.678	43.62	20.97
4.419	318.4	21.67	1.088	34.72	17.44	7.657	295.4	24.92	2.191	57.71	21.13
4.571	363.0	23.45	1.423	45.88	17.60	8.069	316.5	25.69	2.905	77.21	21.45
4.666	400.9	25.15	1.755	57.67	17.71	8.461	337.1	26.48	3.705	99.85	21.84
4.777	469.4	28.61	2.273	77.72	17.99	8.523	338.1	26.83	4.411	120.3	22.28
4.842	526.4	31.90	2.802	97.88	18.35	8.919	359.1	27.68	5.092	140.8	22.77
4.864	547.5	33.19	3.296	118.1	18.71	9.410	385.7	28.82	5.751	161.1	23.24
4.896	575.8	35.10	3.764	138.6	19.10	9.797	406.3	29.76	6.409	181.8	23.77
4.930	605.2	37.16	4.206	159.3	19.62	10.19	427.7	30.76	7.045	202.4	24.37
4.972	635.7	39.35	4.621	180.1	20.12	10.59	448.9	31.81	7.679	223.3	24.99
5.006	654.6	40.82	5.013	200.5	20.65	11.01	469.9	32.94	8.290	243.8	25.60
5.045	673.5	42.23	5.389	222.5	21.25	11.50	497.7	34.43	8.903	264.2	26.30
5.089	691.7	43.80	5.726	241.1	21.80	11.99	518.5	35.66	9.504	285.0	27.03
5.146	709.6	45.43	6.026	259.3	22.39	12.49	540.1	36.98	10.09	305.3	27.71
			6.340	279.6	23.02	12.96	560.8	38.30	10.69	325.4	28.47
	$\begin{gathered} 323.15 \mathrm{~K} \\ 3.330 \end{gathered}$		6.694	302.9	23.86	13.16	569.3	38.78	11.28	345.6	29.32
0.1018 0.1020	3.330 3.336	16.03 16.01	6.952	320.6	24.52				11.89	366.5	30.10
0.1020 0.3934	13.336 13.11	16.01 16.07	7.252 7.459	342.0 357.9	25.32 25.91				12.44 13.04	384.9 404.6	30.98 31.87

Equation 2 was obtained for the present experimental viscosities in the whole range of pressure and temperature as a function of temperature and density. Constants in eq 2 are

$$
\begin{gather*}
\eta=b_{0}+b_{1} \rho+b_{2} \rho^{2}+b_{3} \rho^{3} \tag{2}\\
b_{0}=b_{01} T+b_{02} T^{2}+b_{03} T^{3} \tag{2.1}\\
b_{1}=b_{10}+b_{11} T+b_{12} T^{2}+b_{13} T^{3} \tag{2.2}\\
b_{2}=b_{20}+b_{21} T+b_{22} T^{2}+b_{23} T^{3} \tag{2.3}\\
b_{3}=b_{30}+b_{31} T \tag{2.4}
\end{gather*}
$$

given in Table IX, and deviations of the present experimental viscosity values from those calculated by eq 2 are shown in Table X and Figure 11. Table X shows that eq 2 is satisfactory for R500 and R502 from the same reason described about eq 1. The maximum deviations are larger for R503 at 298.15, 323.15 , and 348.15 K . However, it should be noted that they occur in the highest density region (see Figures 9 and 10). Then, it can be said that eq 2 is satisfactory for R503 in the

Table VIII. Constants in Eq 1 and Deviations of Experimental Viscosity Values at Atmospheric Pressure from Those Calculated by Eq 1

	R500	R502	R503
a_{1}	4.15976×10^{-2}	4.58808×10^{-2}	5.36971×10^{-2}
a_{2}	-4.87128×10^{-6}	-9.53395×10^{-6}	-1.24718×10^{-5}
T range, K	$273.15-423.15$	$273.15-398.15$	$273.15-423.15$
n^{a}	6	7	
dev, ${ }^{b} \%$	7		0.02
\quad av	0.20	-0.00	0.21
\quad bias	-0.01	0.04	-0.01
max	0.34		0.46

${ }^{a}{ }_{n}=$ number of data. ${ }^{b}$ Deviation, av $=100 \sum\left\{\left|\eta_{\text {expt }}-\eta_{\text {calced }}\right| /\right.$ $\left.\eta_{\text {calcd }}\right\} / n$. Deviation, bias $=100 \sum\left\{\left(\eta_{\text {expt1 }}-\eta_{\text {calcd }}\right) / \eta_{\text {calcd }}\right\} / n$. Deviation, max $=$ maximum of $100 \mid \eta_{\text {exptl }}-\eta_{\text {calcd }} / \eta_{\text {calcd }}$.
density range below $600 \mathrm{~kg} / \mathrm{m}^{3}$.
The density of R500 can be calculated by eq 3 (20), the constants of which were determined by the present authors using the present experimental density values and are shown in Table XI. Deviations of the present experimental density

Table IX. Constants in Eq 2

	R500	R502	R503
b_{01}	4.21248×10^{-2}	4.65472×10^{-2}	5.44946×10^{-2}
b_{02}	-6.46990×10^{-6}	-1.16797×10^{-5}	-4.48308×10^{-5}
b_{10}	-1.15943×10^{-1}	-8.90508×10^{-2}	-2.77843×10^{-2}
b_{11}	5.66237×10^{-4}	4.46167×10^{-4}	1.40920×10^{-4}
b_{12}	-6.5209×10^{-7}	-5.16951×10^{-7}	-1.17507×10^{-7}
b_{20}	7.19×10^{-5}	3.19920×10^{-4}	8.00691×10^{-5}
b_{21}	0	-1.61430×10^{-6}	-8.75862×10^{-8}
b_{22}	0	2.20661×10^{-9}	0
b_{30}	1.525×10^{-8}	0	0
b_{31}	-7.6×10^{-11}	0	0

Table X. Deviations of Experimental Viscosity Values from Eq 2

$\begin{aligned} & \text { temp, } \\ & \mathrm{K} \end{aligned}$	$\begin{aligned} & P \text { range, } \\ & \text { MPa } \end{aligned}$	ρ range, $\mathrm{kg} \cdot \mathrm{m}^{-3}$	n^{a}	dev, ${ }^{\text {b }}$ \%		
				av	bias	max
R500						
273.15	0.3512	16.98	6	0.34	+0.34	0.59
298.15	0.7388	34.90	10	0.19	-0.19	0.30
323.15	1.397	67.15	15	0.11	+0.01	0.32
348.15	2.402	124.5	23	0.14	+0.08	0.44
373.15	3.926	276.8	28	0.13	+0.01	0.38
398.15	5.299	334.5	32	0.28	-0.13	0.95
423.15	7.688	463.5	37	0.29	-0.22	0.71
R502						
273.15	0.560	31.46	8	0.07	-0.01	0.14
298.15	1.128	63.96	14	0.06	-0.01	0.11
323.15	2.064	126.7	20	0.12	-0.11	0.31
348.15	3.481	273.0	28	0.13	-0.06	0.55
373.15	5.344	492.6	$42^{\text {c }}$	0.15	+0.06	0.36
398.15	6.266	382.1	$37^{\text {d }}$	0.17	-0.08	0.91
R503						
273.15	2.659	164.7	17	0.65	-0.65	0.94
298.15	5.146	709.6	28	0.55	+0.55	1.42
323.15	8.362	657.8	32	0.60	-0.45	1.46
348.15	11.90	663.4	38	0.43	-0.32	1.32
373.15	13.16	572.8	32	0.26	+0.18	0.78
398.15	12.55	450.6	27	0.15	-0.08	0.43
423.15	13.04	404.6	23	0.13	+0.01	0.33

${ }^{a} n=$ number of data. ${ }^{b}$ Definition of deviations is the same as in Table VIII. ${ }^{c} 10$ data were omitted from 5.461 to 6.534 MPa .
${ }^{d}$ Four data were omitted at pressures from 6.498 to 6.966 MPa .
Table XI. Constants in Eq 3, Equation of State for R 500

$R=0.0820568 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$	$a=0.18949366 \times 10$
$A_{0}=2.2454666$	$b=0.40383132 \times 10^{-1}$
$B_{0}=0.80445386 \times 10^{-2}$	$c=0.15868914 \times 10^{6}$
$C_{0}=0.89637405 \times 10^{6}$	$e=-0.64800314 \times 10^{2}$
$D_{0}=0.27927010 \times 10^{8}$	$e=-0.50668022 \times 10^{9}$
$E_{0}=-0.12047885 \times 10^{10}$	$f=-0.19238439 \times 10^{39}$
	$g=0.30061305 \times 10^{15}$
	$h=-0.28904021 \times 10^{32}$
	$\alpha=0.38452516 \times 10^{-3}$
	$\gamma=0.20299265 \times 10^{-1}$

values from those calculated by eq 3 are shown in Table XII. They are of the same order in the temperature range from 273.15 to 373.15 K as those from the equation of state proposed by Sinka et al. (21), and smaller at 398.15 and 423.15 K.
$P=$

$$
\begin{gather*}
R T \rho+\left(B_{0} R T-A_{0}-C_{0} / T^{2}+D_{0} / T^{3}-E_{0} / T^{4}\right) \rho^{2}+ \\
\left(b R T-a-d / T-e / T^{4}-f / T^{23}\right) \rho^{3}+ \\
\alpha\left(a+d / T+e / T^{4}+f / T^{23}\right) \rho^{6}+ \\
\left(c / T^{2}+g / T^{8}+h / T^{17}\right) \rho^{3}\left(1+\gamma \rho^{2}\right) \exp \left(-\gamma \rho^{2}\right) \tag{3}
\end{gather*}
$$

The density of R503 can be calculated by the equation of state proposed by Sinka et al. (22). Deviations of the experimental density values from those calculated by this equation are shown in Table XIII. Reasonable constants of eq 3 could not be obtained for R503.

Table XII. Deviations of Present Experimental Density Values of R500 from Those Calculated by Eq 3

temp, K	Prange, MPa	ρ range, $\mathrm{kg} \cdot \mathrm{m}^{-3}$	n^{a}	av		
	dev, ${ }^{b} \%$					
273.15	0.3512	16.98	6	0.07	-0.07	0.11
298.15	0.7388	34.90	10	0.09	+0.04	0.39
323.15	1.397	67.15	15	0.38	-0.21	0.95
348.15	2.402	124.5	23	0.45	-0.44	0.93
373.15	3.926	276.8	28	0.96	+0.94	5.42
373.15^{c}	3.620	206.6	22	0.33	+0.30	1.30
398.15	5.299	334.5	32	0.55	$\mathbf{+ 0 . 5 2}$	1.67
423.15	7.688	463.5	37	0.49	+0.40	1.29

${ }^{a} n=$ number of data. ${ }^{b}$ Deviation, av $=100 \sum\left\{\mid \rho_{\text {expt }}-\rho_{\text {caled }} / /\right.$ $\left.\rho_{\text {calcd }}\right\} / n$. Deviation, bias $=100 \sum\left\{\left(\rho_{\text {expti }}-\rho_{\text {calcd }}\right) / \rho_{\text {calcd }}\right\} / n$. Deviation, $\max =$ maximum of $100 \mid \rho_{\text {exptl }}-\rho_{\text {calcd }} / / \rho_{\text {calcd }}$. ${ }^{c}$ Six data at pressures above 3.697 MPa were omitted.

Table XIII. Deviations of the Present Experimental Density Values of R503 from Those Calculated by the Equation of State Proposed by Sinka et al. (22)

temp, K	Prange, MPa	ρ range, $\mathrm{kg} \cdot \mathrm{m}^{-3}$	n^{a}	$\mathrm{dev}^{b} \%$		
	av	bias	\max			
273.15	2.654	164.7	17	1.76	-1.76	2.54
298.15	5.146	709.6	28	1.45	-1.45	2.69
323.15	8.362	657.8	32	1.15	-1.14	1.54
348.15	11.90	663.4	38	0.94	-0.93	1.61
373.15	13.16	569.3	32	1.08	-1.08	2.78
398.15	12.55	450.6	27	1.13	-1.09	1.77
423.15	13.04	404.6	23	0.95	-0.77	1.58

${ }^{a} n=$ number of data. ${ }^{b}$ Definition of deviation is the same as in Table XII.

Glossary

$A_{0}-E_{0}$	constants in eq 3
P	pressure, MPa or atm
R	gas constant $\left(=0.0820568 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$
T	temperature, K
a	constant in eq 3
a_{1}	constants in eq $1(i=1,2)$
b	constant in eq 3
b_{1}	constants in eq $2(i=0,1,2,3)$
$b_{0 i}$	constants in eq $2.1(i=1,2,3)$
$b_{1 /}$	constants in eq $2.2(i=0,1,2,3)$
$b_{2 /}$	constants in eq $2.3(i=0,1,2,3)$
$b_{3 /}$	constants in eq $2.4(i=0,1)$
$c-h$	constants in eq 3
α, γ	constants in eq 3
η	viscosity, $\mu \mathrm{Pa} \cdot \mathrm{s}$
η_{1}	viscosity at atmospheric pressure, $\mu \mathrm{Pa} \cdot \mathrm{s}$
ρ	density, $\mathrm{kg} \cdot \mathrm{m}^{-3}$ or mol $\cdot \mathrm{L}^{-1}$

Registry No. R500, 56275-41-3; R502, 39432-81-0; R503, 50815-73-1.

Llterature Clied

(1) Takahashi, M.; Takahashi, S.; Iwasaki, H. Kagaku Kogaku Ronbunshu 1983, 9, 482.
(2) Takahashi, M.; Takahashi, S.; Iwasaki, H. Kagaku Kogaku Ronbunshu 1984, $10,7$.
(3) Takahashi, M.; Takahashi, S.; Iwasaki, H. J. Chem. Eng. Data 1985, $30,10$.
(4) Takahashi, M.; Yokoyama, C.; Takahashi, S. Kagaku Kogaku Ronbunshu 1985, 11, 155.
(5) Takahashi, M.; Yokoyama, C.; Takahashi, S. J. Chem. Eng. Data 1987, 32, 98.
(6) Makita, T. Viscosity and Thermal Conductivity; Baifukan: Tokyo, 1975; p 224-226.
(7) Latto, B.; Hesoun, P.; Asrani, S. C. Proc. 5th ASME Symp. Thermophys. Prop. $1970,177$.
(8) Thermophysical Properties of Refrigerants; American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.: New York, 1976.
(9) Transport Properties of Freon Fluorocarbons; Tech. Note C30; Du Pont de Nemours and Co., Inc., 1967.
(10) Iwasaki, H.; Takahashi, H. Bull. Chem. Res. Inst. Non-Aqueous Solutions, Tohoku University 1956, 6, 61.
(11) Iwasaki, H.; Takahashi, M. Rev. Phys . Chem. Jpn. 1968, 38, 18.
(12) Newell, G. F. Z. Angew. Math, Phys. 1959, 10, 160.
(13) Iwasal, H.; Kestin, J. Physica 1963, 29, 1345.
(14) Hanley, H. J. M.: Ely, J. F. J. Phys. Chem. Ref. Data 1973, 2, 735
(15) Hanley, H. J. M.; McCarty, R. D.; Haynes, W. M. J. Phys Chem. Ref Data 1973, 2, 735
(16) Iwasaki, H.; Takahashi, M. Proc. 4th Conf. High Pressure, Kyoto 1974; Physicochemical Society of Japan: Kyoto, 1974; p 523.
(17) Michels, A.; Lunbeck, R. J.; Wolkers, G. J. Physica 1951, 17, 801.
(18) Michels, A.: Gibson, R. O. Ann. Phys. 1928, 87, 850
(19) Martin, J. J.; Downing, R. C. ASHRAE Trans. Part II 1970, 129
(20) Nishiumi, H.; Saito, S. J. Chem. Eng. Jpn. 1965, 8, 356.
(21) Sinka, V. J.; Murphy, K. P. J. Chem. Eng. Data 1967, 12, 315.
(22) Sinka, J. V.; Rosenthal, E.; Dlxon, P. P. J. Chem. Eng. Data 1970 15, 73.

Received for review April 7, 1987. Revised February 9, 1988. Accepted March 9, 1988. We thank the Daikin Kogyo Co. for supplying the samples.

Vapor-Liquid Equilibria in the Methane-Diethylene Glycol-Water System at 298.15 and 323.15 K

Chiaki Yokoyama,* Shlgeru Wakana, Gen-ichi Kaminlshi, and Shinji Takahashl
Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Sendai 980, Japan

Abstract

The water contents of compressed methane gas in equillbrlum with water and diethyiene glycol-water solutions of $0.156,0.472$, and 0.662 mole fraction water were measured at 298.15 and 323.15 K and pressures of 3, 5 , and $8 \mathbf{M P a}$. The solubilltles of methane in the diethylene glycol, water, and diethylene glycol-water solutions were also measured under the same conditions of the water content measurement. The methane solubilly data were analyzed with the Krichevsky-Kasarnovsky equation to obtain the Henry constant of methane in the diethylene glycol-water solutions.

Gas dehydration plays an important part in gas purification processes. Diethylene glycol and triethylene glycol are effective gas dehydrating agents. A knowiedge of the vapor-liquid equilibria in the gas-glycol-water system is helpful in designing an effective dehydration system. Takahashi et al. (1) have reported the vapor-liquid equilibrium data in the carbon di-oxide-diethylene glycol-water and carbon dioxide-triethylene glycol-water systems. In this study, we measured the va-por-liquid equilibria in the methane-diethylene glycol-water system at 298.15 and 323.15 K and pressures of 3,5 , and 8 MPa .

Among the binary systems made up of methane, diethylene glycol, and water, the vapor-liquid equilibrium data for the methane-water system have been studied extensively. The solubility of methane in water was measured by Michels et al. (2) at temperatures from 298.15 to 423.15 K and at pressures up to 20 MPa , by Culberson and McKetta (3) at temperatures from 298 to 444 K and at pressures up to 69 MPa , and by O'Sullivan and Smith (4) at temperatures from 323 to 398 K and at pressures up to 61 MPa . The water content in methane was measured by Olds et al. (5) at temperatures from 310.7 to 510.8 K and at pressures up to 69 MPa , and by Rigby and Prausnitz (6) at temperatures from 298.15 to 373.15 K and at pressures up to 9.3 MPa . The vapor-liquid equilibria in the methane-water system were measured by Gillespie and Wilson (7) at temperatures from 323.15 to 588.71 K and at pressures up to 14 MPa . The vapor-liquid equilibria in the diethylene glycol-water system was measured by Jelinek et al. (8). Russell et al. (9) measured the vapor-liquid equilibria in the natural gas (94% methane)-aqueous diethylene glycol (5 wt \% water) system at a temperature of 310.93 K and at pressures up to 13.8 MPa .

Experimental Procedure

The measurements of this study were made in a vapor recirculating static apparatus. The schematic diagram is shown
in Figure 1. The equilibrium cell is a $100 \mathrm{~cm}^{3}$ dual window model constructed by Ruska Instrument Corp. Samples were withdrawn from the equilibrated phases through $1 /{ }_{18}$-in. 316 stainless steel tubing. The bath temperature was controlled to within $\pm 0.02 \mathrm{~K}$ with a thermistor controller and measured by the mercury thermometer, which was calibrated by a LeedsNorthrup platinum resistance thermometer with an accuracy 0.01 K . The pressure of the cell was measured with a strain gauge pressure transducer calibrated periodically by a dead weight pressure gauge. The accuracy of the pressure measurement was estimated to be 1 kPa . To promote attainment of equilibrium, the vapor phase was circulated by means of a magnetic recirculation pump. The function of the pump was to withdraw the vapor from the top of the cell and discharge the vapor into the bottom of the cell. After the vapor was recirculated about 2 h , the vapor and liquid phases were allowed to remain stationary to ensure a complete separation of the phases.

The diethylene glycol-water solutions used for the ternary system were prepared by adding water to diethylene glycol until the binary mixture reached a predetermined weight. Weighings were performed on a Sartorius analytical balance capable of precision to at least 0.1 mg . The accuracy of the determination of the composition was within a mole fraction of 0.0002 . After the cell was evacuated by a vacuum pump, the solution was fed to the cell. Then methane was bubbled into the solution for 30 min to saturate the solution with methane and discharge other light gases dissolved in the solution. After the degassing procedure, the final composition of the solution was checked by a KarI-Fisher titration apparatus but was found not to change appreciably.
Methane was then added to the cell to adjust the cell pressure. The bath was heated to the desired temperature and the vapor was recirculated by the magnetic pump. Samples of each phases were withdrawn from the cell through $1 / 16$-in. tubings, which were heated to prevent a condensation of water and diethylene glycol. After the contents in the sampling line was purged out about $1 \mathrm{~cm}^{3}$, a sample of $3-5 \mathrm{~cm}^{3}$ was withdrawn into a sample train and weighed with an accuracy of 0.1 mg .

Sample Analysis

The methane dissolved in the liquid-phase sample was collected in a gas buret with the use of a Toepler pump. The volume of the gas buret was calibrated with mercury to within $\pm 0.01 \mathrm{~cm}^{3}$. The details of the gas buret and Toepler pump were described by Arai et al. (10). The quantity of methane was determined from the pressure, volume, and temperature in the expanded state. The pressure after expansion was

